Using the below table of fertilizer prices and analysis, the NDSU soil guidelines, and the attached soil tests, numbered 1 – 2 complete the following questions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Analysis</th>
<th>Price per Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>46 – 0 – 0</td>
<td>$380</td>
</tr>
<tr>
<td>MAP (Monoammonium phosphate)</td>
<td>11 – 52 – 0</td>
<td>$545</td>
</tr>
<tr>
<td>AMS (Ammonium sulfate)</td>
<td>21 – 0 – 0 – 24 (S)</td>
<td>$340</td>
</tr>
<tr>
<td>Potash</td>
<td>0 – 0 – 60</td>
<td>$385</td>
</tr>
</tbody>
</table>

For Soil Test 1:
1. Looking at soil test one:
 a. How much nitrogen is in the soil
 b. How much nitrogen do you need to add for 160 bushels
 c. What phosphorus test was used?
 d. How much P2O5 do you need to add for 160 bushels?
 e. How much K20 do you need to add for 160 bushels?
 f. How much sulfur do you need to add for 160 bushels?

2. Using the NDSU guide, how much nitrogen would you have to add to get 160 bushel yield. How does this compare to the Agvise number? NOTE: The technique use in class only works if the numbers are linearly related. NDSU guide is

3. Using the NDSU guide, how much P2O5 would you have to add to get 160 bushel yield. How does this compare to the Agvise number?

4. Using the above four fertilizers, design a blend for one acre with a yield goal of 160 pounds.
 a. How much of the above fertilizers do you use? Use AGVISE \(K \)
 b. What is your cost per acre
 c. What is the new analysis of your blend?

5. Given the same soil test numbers and the NDSU guide, design a blend for soybeans with a yield potential of 50 bushels.
 a. How much of the above fertilizers do you use?
 b. What is your cost per acre
 c. Does analysis of your blend change?

For Soil Test 1:
6. Looking at soil test one:
 a. How much nitrogen is in the soil
 b. How much nitrogen do you need to add for 170 bushels
 c. How much P2O5 do you need to add for 170 bushels?
 d. How much K20 do you need to add for 170 bushels?
 e. How much sulfur do you need to add for 170 bushels?

7. Using the NDSU guide, how much nitrogen would you have to add to get 170 bushel yield. How does this compare to the Agvise number?

8. Using the NDSU guide, how much P2O5 would you have to add to get 170 bushel yield. How does this compare to the Agvise number?
9. Using the above four fertilizers, design a blend for one acre with a yield goal of 160 pounds.
 a. How much of the above fertilizers do you use? Use AGVISE
 b. What is your cost per acre
 c. What is the new analysis of your blend?

10. Given the same soil test numbers and the NDSU guide, design a blend for alfalfa with a 6 ton yield.
 a. How much of the above fertilizers do you use?
 b. What is your cost per acre

For Soil Test 2:

11. Looking at soil test two:
 a. How much nitrogen is in the soil
 b. How much nitrogen do you need to add for 180 bushels
 c. How much P2O5 do you need to add for 180 bushels?
 d. How much K2O do you need to add for 180 bushels?
 e. How much sulfur do you need to add for 180 bushels?

12. Using the NDSU guide, how much nitrogen would you have to add to get 180 bushel yield. How does this compare to the Agvise number?

13. Using the NDSU guide, how much K2O would you have to add to get 180 bushel yield. How does this compare to the Agvise number?

14. Using the above four fertilizers, design a blend for one acre with a yield goal of 180 pounds. Assume you bump your Sulfur from 0lbs to 10 lbs per acre.
 a. How much of the above fertilizers do you use? USE AGVISE
 b. What is your cost per acre
 c. What is the new analysis of your blend?

15. Given the same soil test numbers and the NDSU guide, design a blend for soybeans with a yield potential of 30 bushels. How much of the above fertilizers do you use?

For Soil Test 2:

16. Looking at soil test two:
 a. How much nitrogen is in the soil
 b. How much nitrogen do you need to add for 160 bushels
 c. How much P2O5 do you need to add for 160 bushels?
 d. How much K2O do you need to add for 160 bushels?
 e. How much sulfur do you need to add for 160 bushels?

17. Using the above four fertilizers, design a blend for one acre with a yield goal of 160 pounds. Assume you bump your Sulfur up to 15 lbs per acre. USE AGVISE
 a. How much of the above fertilizers do you use?
 b. What is your cost per acre
 c. What is the new analysis of your blend?
 d. How much cheaper would the blend be if you included no phosphorus potassium or sulfur?
Nutrient In The Soil

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>0-6"</th>
<th>12"</th>
<th>30"</th>
<th>60"</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>9 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>6 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>160 ppm</td>
<td>64 ppm</td>
<td>82 ppm</td>
<td>101 ppm</td>
</tr>
<tr>
<td>Ca</td>
<td>18 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>2.6 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.01 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>3.3 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.59 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.4 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.2 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>88 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>2800 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.3 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>0.33 mS/cm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpretation

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>0-6"</th>
<th>12"</th>
<th>30"</th>
<th>60"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1st Crop Choice

- Corn-Gran
- Yield Goal
- N: 154
- P₂O₅: 52
- K₂O: 16
- Band: *

2nd Crop Choice

- Corn-Gran
- Yield Goal
- N: 166
- P₂O₅: 55
- K₂O: 10
- Band: *

3rd Crop Choice

- Corn-Gran
- Yield Goal
- N: 170
- P₂O₅: 50
- K₂O: 10
- Band: *

Soil Test Results

- PH: 7.2
- EC: 21.2 meq

% Base Saturation

- Ca: 1.0%
- Mg: 6.4%
- K: 3.1%
- Na: 0.0%
- H: 0.0%
Issues with the Soil

Saline soils inhibit/reduce germination and also put crops into drought stress.

Often occurs: along ditch, seep, in areas with high water table

Saline areas may grow in size if not actively managed.

Management Options

- **EC₁, 0.3 – 2:** grow whatever, but be aware if EC approaches a value of 2
- **EC₁, 2 – 4:** ditching, use more salt-tolerant crops, cover for longer, mulch, do not till, tiling
- **EC₁, 4+:** kochia management, perennial species, ditching, tiling, do not till

Nutrients In The Soil

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>0-6”</th>
<th>6-12”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>203 ppm</td>
<td>120 lb/ac</td>
</tr>
<tr>
<td>Phosphate</td>
<td>43 ppm</td>
<td>0.37 ppm</td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.5 ppm</td>
<td>4.1 ppm</td>
</tr>
<tr>
<td>Iron</td>
<td>0.77 ppm</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td>Copper</td>
<td>2553 ppm</td>
<td>0.07 ppm</td>
</tr>
<tr>
<td>Manganese</td>
<td>25 ppm</td>
<td>255 ppm</td>
</tr>
<tr>
<td>Sulfate</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Potassium</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Boron</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Zinc</td>
<td>5 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Nickel</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Copper</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Iron</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Manganese</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Sulfate</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Potassium</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Boron</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
<tr>
<td>Zinc</td>
<td>0 ppm</td>
<td>0 ppm</td>
</tr>
</tbody>
</table>

Interpretation

- **S:** Not Available
- **P:** Not Available
- **K:** Not Available
- **Ca:** Not Available
- **Mg:** Not Available
- **Na:** Not Available
- **Cl:** Not Available

Crop Yield

<table>
<thead>
<tr>
<th>Crop Yield</th>
<th>2nd Crop Choice</th>
<th>3rd Crop Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 BU</td>
<td>Band (2x2)</td>
<td>Band (2x2)</td>
</tr>
<tr>
<td>170 BU</td>
<td>Band (2x2)</td>
<td>Band (2x2)</td>
</tr>
<tr>
<td>200 BU</td>
<td>Band (2x2)</td>
<td>Band (2x2)</td>
</tr>
</tbody>
</table>

Soil pH

- **pH:** 8.1
- **Buffer pH:** 65.4 meq

Cation Exchange Capacity

- **Ca:** 66.2
- **Mg:** 33.0
- **K:** 0.8
- **Na:** 0.5
1. A 19.165
 B. 15.4 16.5
 C. Olsen
 D. 5 16.5
 E. 10 16.5
 F. 5 16.5

2. \[\frac{150}{180} = \frac{160}{x} \text{ yield goal} \]
 \[160 \times 180 = 150x \]
 \[28,800 = 150x \]
 \[\frac{192}{16} = x \text{ N NOSV} \]
 \[154 + 19 = 173 \text{ 16S N-AGVIS} \]

3. \[\frac{42}{150} = \frac{x}{160} \]
 \[6720 = 150x \]
 \[x = 44.8 \text{ NOSV} \]
 \[52 \text{ AGVIS} \]
Work Right to Left

Fert #1 - 21-0-0-24 AMS

\[x \times 24\% = 5 \text{ lbs N} \]

\[21 \text{ pounds AMS} \]

Nitrogen = 21 pounds x 0.21 = 4.41 lbs N

Fert #2 - Potash - 0-0-60

\[x \times 60\% = 10 \text{ lbs K}_2O \]

\[x = 17 \text{ lbs Potash} \]

Fert #3 - MAP - 11-52-0

\[x \times 52\% = 52 \text{ lbs P}_2O_5 \]

\[x = 100 \text{ lbs MAP} \]

Nitrogen = 100 x 0.11 = 11 lbs N

Fert #4 - Urea - 46-0-0

\[x \times 46\% = 139 \text{ lbs N} \]

\[x = 302 \text{ lbs UREA} \]
4. Continued

B. AmS 21 \times \frac{5}{16} = \$3.57

Potash 17 \times 0.1925 = \$3.2725

MAP 100 \times 0.2725 = \$27.25

UREA 302 \times 0.19 = \$57.38

\boxed{\$91.4725}

C.

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Lbs</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmS</td>
<td>21</td>
<td>21-0-0-24</td>
</tr>
<tr>
<td>Potash</td>
<td>17</td>
<td>0-0-60</td>
</tr>
<tr>
<td>MAP</td>
<td>100</td>
<td>11-52-0</td>
</tr>
<tr>
<td>UREA</td>
<td>302</td>
<td>46-0-0</td>
</tr>
</tbody>
</table>

\[\frac{154}{440} \times 6 = \frac{5}{2} \]

\[\frac{10}{440} \times 6 = \frac{5}{2} \]

\[0.35, 0.12, 0.02, 0.01 \]

\boxed{35 - 12 - 2 - 1}
5. P 16s 16s
 1116s
 0

MAP 11 - 52 - 0

A. \(x \times 52\% = 11 \)

\[\frac{22 \text{ lbs MAP}}{\text{lbs}} \]

B. \(22 \times 0.2725 = 60.00 \)

C. Nope
6. A 19.16s
 B 166
 C 55
 D 10
 E 5

7. \[
\frac{\text{Yield 150}}{\text{Nitrogen} 180} = \frac{170}{x}
\]

\[
150 \cdot 170 = 180x
\]

\[
25500 = 180x
\]

\[
142 \text{ lbs}
\]

8. \[
\frac{\text{Pct 42}}{\text{Yield 150}} = \frac{x}{170}
\]

\[
150x = 42 \cdot 170
\]

\[
150x = 7140
\]

\[
481.6 \text{ lbs}
\]
Fert #1 AMS 21-0-0-0.24
x 0.24% = 5.16 lbs
\[\text{21 lbs AMS}\]
Nitrogen 21 lbs x 0.21 = 4.41 lbs N
\[\text{Nitrogen Tally}\]
\[\frac{166 \text{ lbs}}{\text{AMS}} \rightarrow \frac{4.41 \text{ lbs}}{\text{MAP}} \rightarrow \frac{149.59}{149.93 - N}\]
Fert #2 0-0-60 potash
x 60% = 10 lbs
\[\text{17 lbs Potash}\]
Fert #3 MAP 11-52-0
x 52% = 5.5
\[\text{x = 106 lbs MAP}\]
Nitrogen 106 lbs x 11% = 11.66 lbs
Fert #4 Urea 46-0-0
x 46% = 150 lbs
\[\text{x = 326 lbs Urea}\]
9. B. \[\frac{16}{16} = \frac{\$}{\$} \]

<table>
<thead>
<tr>
<th></th>
<th>16s</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS</td>
<td>21</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>Potash</td>
<td>17</td>
<td>.1925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2725</td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>106</td>
<td>.2725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.885</td>
<td></td>
</tr>
<tr>
<td>UREA</td>
<td>326</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

\[\frac{\$}{\$} = 97.7275 \]

9. C

<table>
<thead>
<tr>
<th></th>
<th>16s</th>
<th>Analysis</th>
<th></th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>S</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4MS</td>
<td>21</td>
<td>21-0-0-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.41</td>
</tr>
<tr>
<td>Pot.</td>
<td>17</td>
<td>0-0-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>106</td>
<td>11.52-0</td>
<td></td>
<td>11.66</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UREA</td>
<td>326</td>
<td>46-0-0</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>166</td>
<td>55</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>470</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>470</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>470</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\frac{166}{470} = \frac{55}{470} = \frac{10}{470} = \frac{5}{470} \]

\[.35 \times .12 = .02 \times .01 \]

\[35 - 12 - 2 - 1 \]
10. \[\frac{165 \times 45}{P_{2}O_{5}} \]

\[\frac{165 \times 45}{K_{2}O} \]

A. \[x \times 52\% = 45 \]

MAP

1152 - 0

B. \[87165 \times 0.2725 = 23.58 \]
12 \text{ in.} \cdot \frac{150^2}{180} = \frac{180}{x} \\
(32400) = (150x) \\
216 \text{ lbs} \quad \text{vs} \quad 186 \text{ lbs} \\
(3) \quad 0 \quad \text{vs} \quad 10 \text{ Aguiar}
14. A. 105 15 10 10

Fert #1 Ams 21-0-0-24

\[
x \times 24\% = 105
\]
\[
\begin{align*}
x &= 42.16\text{ Ams} \\
\% &= 8.82\text{ Ams}
\end{align*}
\]

Nitrogen 42 x 0.21 = \sim 8.82\text{ Ams}

Fert #2 Potash 0-0-60

\[
x \times 60 = 10
\]
\[
\begin{align*}
x &= 17.16\text{ Potash} \\
\%
\end{align*}
\]

Fert #3 Map 11-52-0

\[
x \times 52\% = 15
\]
\[
\begin{align*}
x &= 29\text{ lbs MAP} \\
\%
\end{align*}
\]

Nitrogen 29 x 0.11 = 3.19

Fert #4 Urea 46-0-0

\[
x \times 46\% = 93
\]
\[
\begin{align*}
x &= 202\text{ lbs Urea} \\
\%
\end{align*}
\]
14. B

\[
\begin{array}{ccc}
\text{Fert} & 16s & \frac{\$}{16} \\
\text{AM} & 42 & .17 \\
\text{Potash} & 17 & .1925 \\
\text{MAP} & 29 & .2725 \\
\text{URGA} & 202 & .19 \\
\end{array}
\]
\[
\frac{7.14}{3.2225} = \frac{\$56.65}{7.9025}
\]

C.

\[
\begin{array}{ccc}
\text{Fert} & 16s & \text{Analysis} \\
\text{AM} & 42 & 21-0-0-24 \\
\text{Potash} & 17 & 0-0-60 \\
\text{MAP} & 29 & 11-52-0 \\
\text{URGA} & 202 & 46-0-8 \\
\end{array}
\]
\[
\begin{array}{cccc}
\text{N} & \text{P} & \text{K} & \text{S} \\
8.82 & - & - & 10 \\
- & - & 10 & - \\
3.19 & 15 & - & - \\
9.3 & - & - & - \\
\end{array}
\]
\[
\begin{array}{cccc}
105 & 15 & 10 & 10 \\
\end{array}
\]

\[
\begin{array}{cccc}
\frac{105}{290} & \frac{15}{290} & \frac{10}{290} & \frac{1}{290} \\
\end{array}
\]
\[
\begin{array}{cccc}
.36 & .05 & .03 & .03 \\
\end{array}
\]
\[
\begin{array}{c}
135 - 5 - 3 - 3
\end{array}
\]
15. Add Zero - NOSU
16. A 81 lbs
 B 81 lbs
 C 15 lbs
 D 10 lbs
 E 0 lbs

17. A. 81 + 15 + 10 + 15 ≤ 145

Fert #1 AMS 21-0-0-24
 x * 24% = 15
 \[
 \frac{x}{6.25} = 165 \text{ AMS}
 \]
 Nitrogen = 62.5 lbs x 0.21 = 13.125 lbs N

Fert #2 Potash 0-0-60
 x * .6 = 10
 \[
 \frac{x}{17} = 165 \text{ Potash}
 \]

Fert #3 N-S 2-0 - MAP
 x * 529 = 15 lbs
 \[
 \frac{x}{28.84} = 165 \text{ MAP}
 \]
 Nitrogen = 28.84 lbs x 0.11 = 3.19 lbs N

Fert #4 Urea 46-0-0
 x * 46% = 65
 \[
 \frac{x}{142} = 165 \text{ Urea}
 \]
17. B.

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>16s</th>
<th>$</th>
<th>16</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ams</td>
<td>62.5</td>
<td>.17</td>
<td>10.625</td>
<td></td>
</tr>
<tr>
<td>Potash</td>
<td>17</td>
<td>.1925</td>
<td>3.2725</td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>29</td>
<td>.2725</td>
<td>7.9025</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>142</td>
<td>.19</td>
<td>-26.98</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td>$48.78/acre</td>
</tr>
</tbody>
</table>

17. C

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>16s</th>
<th>Analysis</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ams</td>
<td>62.5</td>
<td>21-0-0-24</td>
<td>13.125</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Potash</td>
<td>17</td>
<td>0-0-60</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>MAP</td>
<td>29</td>
<td>11-52-0</td>
<td>3.19</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urea</td>
<td>157</td>
<td>46-0-0</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Totals</td>
<td>265.5</td>
<td></td>
<td>81</td>
<td>15</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

31-6-4-6
Cost 1
$48.78

\(\frac{\text{acre}}{} \)

Cost 2
81 16s from UREA 46-0-0
x \cdot 46\% = 81
\sim 177 \text{ lbs} \times \frac{819}{116}

\$33.63

\(\frac{\text{acre}}{} \)

48.78 - 33.63

\$15.15